Cubic Thue equations with many solutions

نویسنده

  • C. L. Stewart
چکیده

We shall prove that if F is a cubic binary form with integer coefficients and non-zero discriminant then there is a positive number c, which depends on F, such that the Thue equation F (x, y) = m has at least c(logm) solutions in integers x and y for infinitely many positive integers m.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integer points on cubic Thue equations

We prove that there are infinitely many inequivalent cubic binary forms F with content 1 for which the Thue equation F (x, y) = m has ≫ (logm) solutions in integers x and y for infinitely many integers m.

متن کامل

Families of Cubic Thue Equations with Effective Bounds for the Solutions

To each non totally real cubic extension K of Q and to each generator α of the cubic field K, we attach a family of cubic Thue equations, indexed by the units of K, and we prove that this family of cubic Thue equations has only a finite number of integer solutions, by giving an effective upper bound for these solutions.

متن کامل

On Correspondence between Solutions of a Parametric Family of Cubic Thue Equations and Isomorphic Simplest Cubic Fields

We give a correspondence between non-trivial solutions to a parametric family of cubic Thue equations X − mXY − (m + 3)XY 2 − Y 3 = k where k | m+3m+9 and isomorphic simplest cubic fields. By applying R. Okazaki’s result for isomorphic simplest cubic fields, we obtain all solutions to the family of cubic Thue equations for k | m + 3m + 9.

متن کامل

On Correspondence between Solutions of a Parametric Family of Cubic Thue Equations and Non-isomorphic Simplest Cubic Fields

We give a correspondence between non-trivial solutions to a parametric family of cubic Thue equations X − mXY − (m + 3)XY 2 − Y 3 = k where k | m + 3m+ 9 and non-isomorphic simplest cubic fields. By applying R. Okazaki’s result for non-isomorphic simplest cubic fields, we obtain all solutions to the family of cubic Thue equations for k | m + 3m+ 9.

متن کامل

A NOTE ON THE FIELD ISOMORPHISM PROBLEM OF X + sX + s AND RELATED CUBIC THUE EQUATIONS

We study the field isomorphism problem of cubic generic polynomial X + sX + s over the field of rational numbers with the specialization of the parameter s to nonzero rational integers m via primitive solutions to the family of cubic Thue equations x − 2mxy − 9mxy −m(2m+ 27)y = λ where λ is a divisor of m(4m+ 27).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007